Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses
نویسندگان
چکیده
Calmodulin-like (CML) proteins are important Ca(2+) sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and fruit, and was strongly up-regulated under cold, drought and salinity stresses along with plant growth hormones. Under cold stress, progressive increase in the expression of ShCML44 was observed particularly in cold-tolerant S. habrochaites. The ShCML44-overexpressed plants showed greater tolerance to cold, drought, and salinity stresses, and recorded higher germination and better seedling growth. Transgenic tomato plants demonstrated higher antioxidant enzymes activity, gas exchange and water retention capacity with lower malondialdehyde accumulation and membrane damage under cold and drought stresses compared to wild-type. Moreover, transgenic plants exhibited reduced reactive oxygen species and higher relative water contents under cold and drought stress, respectively. Greater stress tolerance of transgenic plants was further reflected by the up-/down-regulation of stress-related genes including SOD, GST, CAT, POD, LOX, PR and ERD. In crux, these results strengthen the molecular understanding of ShCML44 gene to improve the abiotic stress tolerance in tomato.
منابع مشابه
An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato
RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flowe...
متن کاملDifferential Transcriptional Regulation in Roots of Tomato Near-Isogenic Lines in Response to Rapid-Onset Water Stress
Cultivated tomato (Solanum lycopersicum L.) is susceptible to abiotic stresses, including drought and chilling stress, while its wild relative (Solanum habrochaites) exhibits tolerance to many abiotic stresses. Chilling roots to 6°C induces rapid-onset water stress by impeding water movement from roots to shoots. Wild S. habrochaites responds to root chilling by closing stomata and maintaining ...
متن کاملExpression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance.
Potato (Solanum tuberosum) is relatively vulnerable to abiotic stress conditions such as drought, but the tolerance mechanisms for such stresses in potato are largely unknown. To identify stress-related factors in potato, we previously carried out a genetic screen of potato plants exposed to abiotic environmental stress conditions using reverse northern-blot analysis. A cDNA encoding a putative...
متن کاملOverexpression of a New Osmotin-Like Protein Gene (SindOLP) Confers Tolerance against Biotic and Abiotic Stresses in Sesame
Osmotin-like proteins (OLPs), of PR-5 family, mediate defense against abiotic, and biotic stresses in plants. Overexpression in sesame of an OLP gene (SindOLP), enhanced tolerance against drought, salinity, oxidative stress, and the charcoal rot pathogen. SindOLP was expressed in all parts and localized to the cytosol. The transgenic plants recovered after prolonged drought and salinity stress,...
متن کاملOverexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants.
It has been established that drought-responsive element binding (DREB) proteins correspond to transcription factors which play important regulatory roles in plant response to abiotic and biotic stresses. In this study, a novel cDNA encoding DREB transcription factor, designated StDREB1, was isolated from potato (Solanum tuberosum L.). This protein was classified in the A-4 group of DREB subfami...
متن کامل